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Intramural wave propagation in cardiac tissue: Asymptotic solutions and cusp waves
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The cardiac muscle is well known to conduct electric impulses anisotropically, showing a larger conduction
velocity along than across fibers. Fiber orientation is not uniform within the cardiac wall, but rotates by as
much as 180° throughout the wall thickness. Numerical simulations and experiments have indicated that this
rotational anisotropy considerably affects the spread of excitation in cardiac tissue: the wave front shows a
complex intramural shape with trailing cusps. The cusps can travel across layers and reach the epicardial and
endocardial surfaces where they cause apparent accelerations of propagation. In the present study we provide
an analytical description of the asymptotic wave front, as well as of cusp waves. We investigate the motion of
cusp waves, based on the assumption that they occur at the intersection of asymptotic solutions, and we show
that our theoretical analysis is in close agreement with numerical simulations. The asymptotic solutions are
found to be determined purely by the fiber organization within the cardiac wall, independent of the excitable
properties of cardiac tissue.
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I. INTRODUCTION Figure Ib) shows another interesting feature of intramu-

The human ventricular myocardium consists of intercon@l Propagation: after the cusp has disappeared, the wave
nected cardiac muscle cells, whose shape is usually approxfOnt acquires a stationary shapedicated by an arrow in
mated by a cylinder with a diameter of 10—26n and a  Fig. 1(b)] and propagates at a constant translational velocity
length of 80—10Qum. These cardiac cells have more end-in the x direction. Its leading peak is located in the upper
to-end connections than side-to-side connectidnsform- layer where the fibers are parallel to tha@xis. To date, this
ing the muscle fibers. The electrical conductivity is muchasymptotic behavior was only described in numerical simu-
higher along than across the fibers, making the myocardiurtations based on the eikonal-curvature equafib®,11. So
highly anisotropid2]. The fibers show a helical arrangement far, no study has provided a quantitative analysis of the
throughout the ventricles, with a counterclockwise rotationasymptotic regime.
of the fiber direction from the epicardial to the endocardial In this paper we derive a closed-form solution for the
surface by 120° in the human heg8] [Fig. 1(a)]. This has  asymptotic wave front. We predict the motion of cusps
been called rotational anisotropy and the rotational angle igcross fiber layers, based on the assumption that cusps arise
often assumed to have a linear dependence on depth withil the intersection of asymptotic solutions. We apply the

the ventricular wall3]. theory to predict when and where such cusps vanish and, by
Rotational anisotropy has been found to have profound

implications on the propagation of electrical signals in car- a b

diac tissue. Numerical simulations showed that fiber rotation endocardium

could produce intramural trailing cusp4,5] and complex

epicardial activation pattern®]. Figure Xb) shows an ex- }

ample of the formation and disappearance of a cusp wav¢ ::\\

inside the myocardial wall. It depicts the intramural propa- |

gation(in the xz plane of a wave induced by stimulation of \\\\ \ \

I x

the left bottom corner. Initially the wave front shows a regu-
lar concentric pattern. As the wave propagates into the uppe:
la.yers' where the flbers_ are more allgned Wlth)the_(ls [S.ee FIG. 1. Fiber rotation through the ventricular wall and intramu-
Fig. 1(@)], the conduction veIOC|ty_ in the direction in- ral cusp waves. Pane¢h) shows the counterclockwise rotation of
Creases. .AS a result, the upper portions of the wave fror!t Sta{ﬁe fibers(thick dashed lingsfrom epicardium to endocardium. It
.propagatl'ng at hlgher.veIOCItles alqng dpax!s and a trail- also depicts the associated coordinate system, with theis and

INg Cusp 1s form_e(IInd!cat_ed by a Clr_de in Fig. ()] where . they axis parallel to the fiber layers and tfzeaxis going from
the Io_cal f|b9r or_|entat|on is perpendicular to th(_e prOpagat'orépicardium to endocardium. The fiber orientation in each layer is
direction. W|th time, the cusp moves across fiber layers. 'Betermined by the anglémade with thex axis. Panelb) shows an
eventually disappears at the epicardial surface, where {fochronal map illustrating the formation, motion, and disappear-
causes an apparent acceleration of propagation. These appgfice of the cusgindicated by a circle The wave was initiated in
ent accelerations have been observed in several experimenfs left bottom corner edg®,y, 0). After the cusp disappears at the
[7.,8] and simulation$9]. Despite this qualitative understand- epicardial surface, a stationary wave is fornfacrow). Isochrones
ing of the formation of cusp waves in cardiac tissue, theare plotted at 10-ms intervals, in a slab of 10 cmx 0.8 cm,
mechanisms underlying their motion across fiber layers rewith a total fiber rotation of 2/3 from bottom to top. The scale in
main unclear. the z direction was increased to make the waves more visible.

epicardium
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doing so, cause apparent accelerations on the epicardial or 7 A
endocardial surface. Finally, we test our theoretical predic-
tions in numerical simulations, using an ionic model of car-
diac tissug12].

I. GEOMETRY AND PROPAGATION MODEL

A portion of the ventricular wall and its constituting fiber
layers is shown in Fig. (). The coordinate normal to the
layers isz, measured from the epicardi@utern surface of
the heart, whilex andy are orthogonal coordinates along the
layers. For the subsequent theoretical analysis, the bound-
aries in thex andy directions are irrelevant, and therefore, A X
we assume the slab to be infinite in those directions.

Wave propagation is assumed to obey the standard mon- FIG. 2. Wave front segment in the norm@B) and the isotro-
odomain reaction-diffusion equations pized (AB* ) medium. The angles with theaxis are denoted by

anda*. The translational velocities, andc;, as well as the velocity
au— ai(Dijaju) +®(u,0) =0, (1) normal to the isotropized wave frofity), are shown.

.

40 + eV (u,5) = 0. (2)  intracellular changes in ionic concentrations. Throughout this
manuscript we will use the following parameter values, typi-
wheret is time and the spatial coordinates dv@,X;,Xs)  cal of human right ventricular tissUya5,16: k=2.6 rad/cm,
=(x,¥,2); in Eq.(1), a double sum overandj is understood. D, =1 cn?/s, and D+=0.11 cni/s. For these values, the
The propagating variables ate(the transmembrane poten- ionic model yields a longitudinal conduction velocity of
tial) and a set of additional variablés also called the gating 65 cm/s and a transversal conduction velocity of

variables. The reaction function® and ¥ are in general 22 cm/sec.

nonlinear and represent the transmembrane ionic currents Note that the detailed form &b and¥ in Egs.(1) and(2)

and their relaxation kinetics, respectively. The parameter iS unimportant in the subsequent theoretical analysis. The
adjusts the fast-time scale relative to the slower ones. At thépecific dynamics of the model will affect the following con-
two boundaries in the direction, we require the standard Siderations only through the parametgr

no-flux conditiond,u=0, whose simple form is due here to

the fibers being parallel to the surface.

The diffusivity matrix D encodes the geometry of Fig. IIl. ASYMPTOTIC WAVE PROPAGATION
1(a). Its nonzero components are A. Slope-driven front behavior
D,,=D, cog #+ Dysir? 6, We study plane waves propagating in thelirection[see
Fig. 1(b)]. We exploit the remaining symmetry by assum-
D,,=D, sir? 6+ Dy cos 6, ing y-independent solutions. This initial condition breaks the
helical symmetry of the slab described by E4). We as-
Das= Dy sume the existence of an asymptotic steady-state solution,

represented by a functior=F(6) =F(kz+ 6;), and propagat-
3) ing uniformly at a translational velocitg,. In a medium

where the conduction velocity along tkalirection is differ-
where D, and Dt are the diffusion coefficients along and ent in each layer due to the fiber rotation, this can only be
across fibers, respectively, and wheréetermines the fiber achieved for wave fronts with a specific tilt in each layer. In
orientation in each layejfig. 1(a)]. We will assume linear this section we derive an equation for the sldpeof the

D12: D21: (DL - DT)COSGS”’] 0,

rotational anisotropy—i.e., asymptotic wave front as a function of the fiber orientation in
a given layer.
0=kz+ 6, O=z<L (k>0,6,=consl,  (4) Consider an arbitrary slice of the wave front as depicted
with L the thickness of the wall. in Fig. 2, thin enough in the direction so that the variation

To represent the excitable dynamics of normal cardiadn ¢ can be neglected. Theto-z anisotropy ratiop? inside

tissue in simulations—i.e., the functiodsand¥ in Egs.(1) this slice is

and (2—we used a modification of the dynamic Luo-Rudy , Dy, 5 _

model(LRd) model[13] developed by Faber and Rufli?]. PP TP (p = Dsir? 0, 5
The LRd model is a general mammalian ventricular cell 33

model, mainly based on data obtained from the guinea pignherep3=D, /D+;p and p, are positive.

The model includes different ionic channel currents, repre- In order to find the motion of fronAB, we first “isotro-
sented mathematically by the Hodgkin-Huxley formalismpize” the slice by scaling itg dimension by a factor 1d, in
[14], as well as ionic pumps and exchangers, and describewder to achieve an isotropic medium with diffusivibs. In
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Fig. 2, leta be the angle between froAB and thez direc-
tion, while o* is the corresponding angle, involving the
isotropized frontAB*. The normal velocity to the fronAB*

is ¢y, which should equad:; cosa* (Fig. 2). Knowing that
the translational velocity scales as thedimension, it is eas-
ily shown that

tarf a = (c,/cp)? — p2.

(6)

Using tane=dF/dz=kF’(6), as well as Eq(5), we get, from

1
(I:r)2:E

X

&

2
) - p2+(p3-1)sir? 6. (7)
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Vpy— 1
F(6) = P02~ coso+F. (11)
The overall sign is chosen for a convex front. Returning to

Eq. (8) and settingf,,;,=0 we find
Cy=C. (12

Remarkably and consistently with numerical simulations per-

formed by Keener and Panfilg®], the translational velocity

is entrained to the longitudinal conduction velocdy over

the whole wall thickness even, for example, where the local

fibers are perpendicular to the translational motion.
Although Eq.(11) is a special case of Eq9), we will

refer to them as cosine and elliptic integral wave solutions,

This equation describes a family of asymptotic solutionsrespectively.

with translational velocitieg,. The value ofc, depends on

the fiber organization in the slab and can be found from Eq.

(7) (see next section

B. Asymptotic shape and translational velocity

Consider a slab of tissue with a wave propagating inxthe
direction. The asymptotic wave front has a leading peak
the layer6=6,,,, where the fibers are the best aligned with
the x axis—i.e., whered is closer to 0 modr [see Fig. 1b)
for examplé.

First, we calculate the translational velocity from Eg.
(7). If the leading peak occurs at one of the boundaries of th
slab, we havd="=0 due to the no-flux boundary condition.
For a leading peak inside the myocardial well,also equals
0, since it is an extremum d¥. By substitution ofF’ (6,
=0 in Eq.(7), we find the translational velocity

8

Cx(Omin) = V(CL CcOS amin)z +(Crsin gmin)zr

IV. QUASIASYMPTOTIC REGIME: CUSP WAVES

An initially plane wave front will go through a transient
phase before reaching its asymptotic regime. It will become
wavy, as the conduction velocity is different in each fiber
layer. If there is a layer where the fibers are perpendicular to

. the propagation direction, a trailing cusp will be formed as a

i

esult of the low conduction velocity. The wave front has two
leading peaks, one above and one under the cusp, propagat-
ing a their own velocitiegsee Fig. 1b)]. In this section we
derive the quasiasymptotic kinetics of cusp waves, based on
the assumption that cusps occur at the intersection of two
%symptotic solutions, each described by E).

Consider a slab with boundariesét 6, (epicardium and
=6, (endocardium For simplicity, we take & 6,<6,
<. Assume a layer with fibers perpendicular to thaxis,
where a cusp is formed in an initially plane wave front. This
layer splits the wave front into two portions, a lower one,
represented by the function, and one above the cusp, rep-

wherec, =crp, and where we considered waves propagatingesented byx,. We assume that; and x, are independent

in the positivex direction.

solutions of Eq.(7) with a cusp at their intersection. The

Next, we calculate the asymptotic shape of the wavesolutionx; has a leading peak @= ¢, and the solutiorx, at

front. Inserting the value af, from Eq.(8) into Eq.(7) and

integrating fromé,,;, to any point within the wall thickness,

we find

-
1

(0, 6min) + Fo, 9)

with Fy an integration constant depending on the origin of

the x axis and

[4

0.(0, i) = * f \sir? @' - sirf 6,,;,,d60’. (10

Omin

The sign determines the slope of the front and is positive for

0< Omin @and negative fo> 6y,

C. Frequent case

Usually, fibers rotate by at leastr23 throughout the ven-
tricular wall [3]. It is therefore common to have a fiber par-
allel to thex axis at a certain depth. In this case—i.@;,
=0—Eg. (9) reduces to the more simple form

0= 6,. The quasiasymptotic kinetics are described by

X1(6,t) = f0,(6,60)) + Fo 1 + (6,

X2(01t) = f(]'_(a, 62) + FO,2+ CX(GZ)t! (13)

with f:(\ﬂT—l)/k. The integration constants, ; and Fg ,
can be found by fixing the origin of theaxis. We chose the
cusp to be located at=0 at timet=0. Substitution into Egs.
(13) yields, for a cusp in the layef=1/2,

m
_,01

2 ), Fo’zz_fo'_<§,02). (14)

FO,1: - f0'+<
Note that cusps can, for example, also be formed where
two asymptotic wave fronts collide. This does not necessar-
ily have to be in the laye®=/2 and will, therefore, affect
the value of the integration constants in Et4). The subse-
quent analysis is, however, valid for such cusps as well.

A. Vanishing cusps

If |6,+6,]# w, the translational velocities,(6;) and
c(6,) are different. In this case, the faster portion of the
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6, curvature effects we consider a thin slice around the leading
peak atd=0, in which fiber rotation can be neglected. In the

- isotropized medium, the eikonal relation for this thin slice
LS ; reads
w2 4+ -1 : *
C,=Cr— DTIC * , (17)
: whereC* is the curvature of the front.
The curvature is given by the second derivative of the
3 isotropized front,C*=d?F* ()/dZ, or, in terms of the
) slope,
0 f
X

Xe _d(tana*) _ Etana

Kc* = (18)
dz dz p
FIG. 3. Schematics of the motion of a trailing cugnick
dashed lingat the intersection of two quasiasymptotic solutiegs | huS we get
and x,, for §,=0 and 6,=27/3. The cusp reaches the surfage d F'(6)
=6, at a distance. C* = R——X2 (19)
dé p
wave front will gradually overtake the slower one. As a re- ,
sult, the cusp will move towards one of the tissue bound- kz{':_(a) + F’(a)i}]. (20)
aries, where it eventually disappedsge Fig. 3. Whenever p dép
this occurs, an apparent acceleration of the wave front will _ . _
be observed on that surface: as the faster portion reaches the 6=0, we haveF’=0 as well as(d/d6)(1/p)=0. Hence,
surface, the translational velocity in tledirection suddenly e get
increases. For example, 6 < 6, mod 7, the portionx; will F"(0) kv’T—l
have a larger translational velocity and the cusp will disap- K* =K = 2 (22)
pear at the surfac@=#6,. The timet, at which the cusp will p(6=0) Po
reach that layer can be found by solving E¢3) for t: after using Eqs(5) and(11) and taking the sign for positive
1 curvature. From Eq.(21), we have K*=5.2y2/3~2.4.
=——————[-fo.(6,0)+Fy,-Fog,. (15  Equation(17) becomesc,=22-0.26, yielding a 1% curva-
C(61) — cx(62) ' ' ture correction to the isotropized speed of the leading peak
The distancex, at which the cusp reaches the surfazeg, ~ and, hence, also to its actual speed. Note that in the left
(Fig. 3) is then given by ventricle,k is even smallef~1.3 rad/cn, yielding an even
smaller curvature correction. We conclude that curvature has
X = X1(6a,te) = Xo(,tc) = Fo 2+ Cy( )1, (16) little effect on the propagation of the cosine wave.

We next consider a trailing cusp. Here the converse ap-
proach is informative: knowing what speed correction is

the same approach can be used to determine the time a &eded, we estimate the curvature and judge to what extent

location at which the cusp crosses an arbitrary layer withirf € cusp is an impgrfect one. By way of illustration We ex-
the myocardial wall. amine the symmetric case whetg=0, 6,=7. The cusp is at

middepth, 6=/2, where the medium is already isotropic.
However, the overall asymptotic wave moves rigidly in the
direction at speed, .

If |6,+6,/=7r, both portions of the wave front have the At its leftmost point, the cusp must have a slapie/dz
same translational velocity. In this case, the cusp remains is0. Without any curvature correction, its speed would sim-
the same fiber layer indefinitely and the quasiasymptotic reply be c;. Therefore we need a correctiap—cy. Such a
gime described by Eq$13) is an asymptotic one, different large correction, twice the original speed, may be too ex-
from the solution derived previously, as it now shows a cusptreme for us to put much trust in the eikonal equation. How-
ever, if we persist, we now have, instead of ELj),

CL=Cr— DT’C (22)

whereF, ; andF, , are given by Eq(14). The equations for
a cusp disappearing at the surfazed,; are similar. Note that

B. Nonvanishing cusps

V. CURVATURE EFFECTS

It is well known that in reaction-diffusion media such as

cardiac tissue, the curvature of a wave front will affect itSTherefore we obtain the concave curvature

propagation velocity: if the front is concave, it will propagate cr-c. ¢ (1

faster than if it is convex. To what extent is our neglect of K= oo - D_<_ - 1) (23
curvature justified? The question is most conveniently an- T TP

swered in the isotropized medium, with diffusiviBy. or, in cnit, £=(65)(9)(1/3-1)=-396, corresponding to a

First, we focus on the leading peak. We take a cosineadius of curvature =~-0.0025 cm. For comparison, the in-
wave as an illustration. In order to obtain an estimate of tharerse pitch isk™*=0.38 cm and the wave front in human

061913-4



INTRAMURAL WAVE PROPAGATION IN CARDIAC ... PHYSICAL REVIEW E 70, 061913(2004)

cardiac tissue is usually 0.2 cm thick. Mathematically speak- 4
ing, a cusp has infinite curvature or, equivalently, a radius of
curvature equal to zero. Here, the radius of curvature is much
smaller than any other spatial dimension of interest, and
therefore, the cusp is perfect for practical purposes.

simulation ——

theory - - -

cosine
wave

VI. THEORY VERSUS COMPUTATIONS

In the simulations, we have considered slabs of cardiacb
tissue with dimensions 6 cm6 cmXx 0.8 cm, to mimic a
typical portion of the right ventricular wall. To integrate Eq.

(1) we have used the operator splitting method to split it into

an ordinary differential equatiofODE) for the reaction part

& and a partial differential equatioPDE) for anisotropic
diffusion. The ODE was solved using a forward Euler
scheme with a time step of 0.01 ms. The relaxation equations
(2) of the gating variable in the LRd model were integrated ZL
using a technique presented by Rush and Laf4&h The -
diffusion PDE was also solved using a forward Euler scheme X 10 mm

with a space step of _0‘10 mm, yielding a numgrlcal accuracy g 4, Comparison of the asymptotic wave front in theory and
of more than 95% with respect to the conduction velocity ofgj1ations in case ta) and case 2b).

action potentials. In the simulations, no-flux boundary con-

ditions were assumed for all boundaries. All simulations B. Quasiasymptotic regime: Cusp waves

were coded in the++ programming language and compu-  In this section we focus on the motion of cusps and the
tations were carried out on a parallel cluster consisting of 1@listance and time at which they reach one of the surfaces of
nodes equipped with dual AMD Athlon MP 22&0proces-  the ventricular wall. As expected, our simulations show a
sors running at 1.8 GHZ. Each node has 1 GB of RAM withcusp forming in both cases @&=/2. In the first case the
the exception of the master node that has 4 GB. We used thausp eventually reaches the endocardial surface, where it
MPI library and a simple “domain slicing” algorithifii8] to ~ causes a sudden increase in the translational velagitin
parallelize the code. the other case, a similar situation is observed, but on the

For the fiber organization we have addressed two differengpicardial surface. Figureg& and %b) illustrate these ob-
cases: in case 1 we pat=0 andd,=2/3 and in case 2 we Servations. For each case we show intramural isochronal
had 6, =5/18 and@,=17x/18. For both cases we compare Maps, depicting the formation and motion of the cusp. In

the asymptotic shape and translational velocity in theory anOth cases an arrow indicates the place where the cusp
simulation, as well as the motion of cusps. reaches the epicardial or endocardial surface.

elliptic
integral
wave

\\\\\\\\\\\\\\

wave front ]

For case 1 the theoretical asymptotic solution is given by c endocardium d epicardium
a cosine wave propagating at the longitudinal velocity of 70 o
65 cm/s. In our numerical simulations we found an 2 o @ 28
asymptotic wave front propagating at 64.7 cm/s, which de- 5 « _ imulation 8 01 ——— rmlation
viates less than 1% from the theoretically predicted value. In < 3 -~ theory &0 -~ theory
Fig. 4a we compare the shape of the “surviving” 10 10 ]
asymptotic wave in the simulation with the theoretically pre- R T T S OO s w5 6
dicted cosine wave. We see that theory and simulation are in X (cm) X (cm)

close agreement. FIG. 5. Formation and disappearance of intramural cusp waves
For case 2, the theory predicts an elliptic integral wave o P P

- d.=62.8 cm/ btained f and its effect on the translational velocity. We show transmural
moving at a speed,=62.8 cm/s, as obtained from E@). isochrones in the&z plane obtained in simulations for caséa] and

Our computations show an asymptotic wave propagating atase 2(h). The point where the cusp disappears at one of the sur-
62.1 cm/s, again close to the theoretical valagout 1%  faces is indicated by an arrow. Plots of the translational velazjty
deviation. Figure 4b) compares the shape of the asymptoticon the endocardial surface for case(d@ and on the epicardial
simulated wave front and the theoretical shape obtained frorsurface for case 2d), are shown as a function of Simulation
elliptic integrals. Both curves show an almost perfect match¢solid line) and theory(dashed lingare compared.
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TABLE I. Time t; and locationx. of cusps reaching the epicar- found, in accordance with earlier simulation studds5],

dial or endocardial surface: theory vs simulation. that the asymptotic waves propagate at the speed calculated
along the best aligned fibers. We have studied the quasias-
Theory Simulation ymptotic regime where trailing cusps are present. The mo-
i tudi n th mption that th
Case 1 & (M9 27 a1 tion of cusps was studied, based on the assumption that they

occur at the intersection of two asymptotic wave solutions. If

X (cm) 1.23 1.20 those solutions have different translational velocities, the
Case 2 te (ms) 59 65 cusp gradually moves toward the endocardial or epicardial
X (cm) 3.03 2.93 surface, where it causes apparent accelerations of the wave

front. Knowing when and where such accelerations occur is
of experimental relevance, for example when trying to deter-
The theory enables us to predict the time and location ofine the longitudinal and transversal propagation velocities
the sudden increase iy, by Eqgs.(15) and (16). First we in cardiac tissue. We apply the theory to predict the location
need to determine the integration constants and the transland time at which such accelerations occur. Simulations were
tional velocities. For case 1, we fourig ;=0 cm andF,,  performed in an extensive model of ventricular tissue. We
=0.22 cm[by numerical integration of Eq(14)]. For the  show that the theory is in close agreement with the numerical
cosine wave with leading peak at0 the translational ve- computations and can be used as a predictive tool.
locity is c,(6;) =65 cm/s. The translational velocity(6,) of Throughout this manuscript we have assumed linear rota-
the elliptic integral wave is readily found from E() and tional anisotropy, described by E@), based on experimen-
has the value 37.52 cm/s. For the second case, the integred evidencg15,19. Some experimental studies have, how-
tion constants ar&, ;=0.37 cm and~, ,=1.03 cm, whereas ever, shown a nonlinear dependence on the depth coordinate
the translational velocites were found to be zin the pulmonary conug7] and in epicardial layers of the
44.9 cm/9c,(#;)] and 62.8 cm/$c,(6,)]. swine right ventricle[20]. We believe that our theoretical
Table | compares the time and location of the disappearapproach is general enough to allow the use of any function
ance of the cusps in simulation and theory, for both casesi(z). This will of course affect the shape of the asymptotic
For the theory, we evaluated the remaining unknown ternwave fronts, which, depending on the choiceé6f), might
a(6,,6,) in Eq. (15), by numerical integration. Note that, in no longer be described by cosine or elliptic integral waves.
the theoretical considerations of Sec. IV, we have assumetihe main results of our study with respect to cusp waves and
that the cusp was fully formed at=0. In reality, it takes apparent accelerations on the outer surfaces will, however,
some time before such cusps develop in an initially planeemain unaffected.
wave front. Therefore, in the simulations, we waited 20 ms We have used a monodomain approach for the reaction-
after stimulating the plane=0, in order for a cusp to form in  diffusion properties of cardiac tissue, neglecting its bidomain
the wave front(fourth isochrone in Fig. 5 for each sejup structure consisting of intracellular and extracellular media.
From Table | we conclude that the theory predicts for bothThe bidomain properties have been shown to play a role in
cases a smallet, than seen in the simulations. Theoretical the formation of virtual electrodes close to the site of stimu-
and computed values are, however, always clabeut 10% lation [21]. In the present paper, we were, however, inter-
deviation. Moreover, the error in the locatioq is for both  ested in propagation far from the stimulating electrode.
setups less than 5%. Again, we conclude that theory an@herefore we believe that the incorporation of bidomain ki-

simulations are in close agreement. netics is likely to have little or no effect on the results of this
Figures %c) and %d) show the translational velocity on study.

the endocardial surface for case[Rig. 5c)] and on the Surprisingly, curvature effects were shown to play a neg-

epicardial surface for case[Fig. §d)], as a function ofk. ligible role in the developed analysis. The asymptotic wave

The results obtained from the simulation are shown as a soliftont propagates at the speed along the best aligned fiber,
line, while the theoretical curve is depicted as a dashed lindndependent of its curvature. This result should not be taken
As expected, a sudden increase of translational velocity wafr granted, however. Equatig@l) indicates that a sufficient
observed, when the cusp reached the surface of interest. Increase in the pitck would make the effect noticeable. This
both cases, the simulations yield a lower translational veloceould be the case in some smaller animal hearts, where the
ity (by about 10%, before the sudden increase. After thetotal fiber rotation can be up to 18022], whereas the wall
cusp has disappeared on one of the outer surfaces, we sggckness can be much smaller than 0.8 cm.
that theory and simulation show an almost perfect match Our analysis is essentially a geometrical one, without any
(about 1% deviation; see Sec. V).B assumption of the choice of ionic model. It is reasonable to
assume that it will hold for any type of cardiac model.

VII. DISCUSSION
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