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The cardiac muscle is well known to conduct electric impulses anisotropically, showing a larger conduction
velocity along than across fibers. Fiber orientation is not uniform within the cardiac wall, but rotates by as
much as 180° throughout the wall thickness. Numerical simulations and experiments have indicated that this
rotational anisotropy considerably affects the spread of excitation in cardiac tissue: the wave front shows a
complex intramural shape with trailing cusps. The cusps can travel across layers and reach the epicardial and
endocardial surfaces where they cause apparent accelerations of propagation. In the present study we provide
an analytical description of the asymptotic wave front, as well as of cusp waves. We investigate the motion of
cusp waves, based on the assumption that they occur at the intersection of asymptotic solutions, and we show
that our theoretical analysis is in close agreement with numerical simulations. The asymptotic solutions are
found to be determined purely by the fiber organization within the cardiac wall, independent of the excitable
properties of cardiac tissue.
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I. INTRODUCTION

The human ventricular myocardium consists of intercon-
nected cardiac muscle cells, whose shape is usually approxi-
mated by a cylinder with a diameter of 10–20mm and a
length of 80–100mm. These cardiac cells have more end-
to-end connections than side-to-side connections[1], form-
ing the muscle fibers. The electrical conductivity is much
higher along than across the fibers, making the myocardium
highly anisotropic[2]. The fibers show a helical arrangement
throughout the ventricles, with a counterclockwise rotation
of the fiber direction from the epicardial to the endocardial
surface by 120° in the human heart[3] [Fig. 1(a)]. This has
been called rotational anisotropy and the rotational angle is
often assumed to have a linear dependence on depth within
the ventricular wall[3].

Rotational anisotropy has been found to have profound
implications on the propagation of electrical signals in car-
diac tissue. Numerical simulations showed that fiber rotation
could produce intramural trailing cusps[4,5] and complex
epicardial activation patterns[6]. Figure 1(b) shows an ex-
ample of the formation and disappearance of a cusp wave
inside the myocardial wall. It depicts the intramural propa-
gation(in the xz plane) of a wave induced by stimulation of
the left bottom corner. Initially the wave front shows a regu-
lar concentric pattern. As the wave propagates into the upper
layers, where the fibers are more aligned with thex axis [see
Fig. 1(a)], the conduction velocity in thex direction in-
creases. As a result, the upper portions of the wave front start
propagating at higher velocities along thex axis and a trail-
ing cusp is formed[indicated by a circle in Fig. 1(b)] where
the local fiber orientation is perpendicular to the propagation
direction. With time, the cusp moves across fiber layers. It
eventually disappears at the epicardial surface, where it
causes an apparent acceleration of propagation. These appar-
ent accelerations have been observed in several experiments
[7,8] and simulations[9]. Despite this qualitative understand-
ing of the formation of cusp waves in cardiac tissue, the
mechanisms underlying their motion across fiber layers re-
main unclear.

Figure 1(b) shows another interesting feature of intramu-
ral propagation: after the cusp has disappeared, the wave
front acquires a stationary shape[indicated by an arrow in
Fig. 1(b)] and propagates at a constant translational velocity
in the x direction. Its leading peak is located in the upper
layer where the fibers are parallel to thex axis. To date, this
asymptotic behavior was only described in numerical simu-
lations based on the eikonal-curvature equation[10,11]. So
far, no study has provided a quantitative analysis of the
asymptotic regime.

In this paper we derive a closed-form solution for the
asymptotic wave front. We predict the motion of cusps
across fiber layers, based on the assumption that cusps arise
at the intersection of asymptotic solutions. We apply the
theory to predict when and where such cusps vanish and, by

FIG. 1. Fiber rotation through the ventricular wall and intramu-
ral cusp waves. Panel(a) shows the counterclockwise rotation of
the fibers(thick dashed lines) from epicardium to endocardium. It
also depicts the associated coordinate system, with thex axis and
the y axis parallel to the fiber layers and thez axis going from
epicardium to endocardium. The fiber orientation in each layer is
determined by the angleu made with thex axis. Panel(b) shows an
isochronal map illustrating the formation, motion, and disappear-
ance of the cusp(indicated by a circle). The wave was initiated in
the left bottom corner edges0,y,0d. After the cusp disappears at the
epicardial surface, a stationary wave is formed(arrow). Isochrones
are plotted at 10-ms intervals, in a slab of 10 cm34 cm30.8 cm,
with a total fiber rotation of 2p /3 from bottom to top. The scale in
the z direction was increased to make the waves more visible.
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doing so, cause apparent accelerations on the epicardial or
endocardial surface. Finally, we test our theoretical predic-
tions in numerical simulations, using an ionic model of car-
diac tissue[12].

II. GEOMETRY AND PROPAGATION MODEL

A portion of the ventricular wall and its constituting fiber
layers is shown in Fig. 1(a). The coordinate normal to the
layers isz, measured from the epicardial(outer) surface of
the heart, whilex andy are orthogonal coordinates along the
layers. For the subsequent theoretical analysis, the bound-
aries in thex and y directions are irrelevant, and therefore,
we assume the slab to be infinite in those directions.

Wave propagation is assumed to obey the standard mon-
odomain reaction-diffusion equations

]tu − ]isDij] jud + Fsu,vWd = 0, s1d

]tvW + eCW su,vWd = 0. s2d

where t is time and the spatial coordinates aresx1,x2,x3d
=sx,y,zd; in Eq. (1), a double sum overi and j is understood.
The propagating variables areu (the transmembrane poten-
tial) and a set of additional variablesvW, also called the gating

variables. The reaction functionsF and CW are in general
nonlinear and represent the transmembrane ionic currents
and their relaxation kinetics, respectively. The parametere
adjusts the fast-time scale relative to the slower ones. At the
two boundaries in thez direction, we require the standard
no-flux condition]zu=0, whose simple form is due here to
the fibers being parallel to the surface.

The diffusivity matrix D encodes the geometry of Fig.
1(a). Its nonzero components are

D11 = DL cos2 u + DT sin2 u,

D22 = DL sin2 u + DT cos2 u,

D33 = DT,

D12 = D21 = sDL − DTdcosu sinu, s3d

where DL and DT are the diffusion coefficients along and
across fibers, respectively, and whereu determines the fiber
orientation in each layer[Fig. 1(a)]. We will assume linear
rotational anisotropy—i.e.,

u = kz+ u1, 0 ø zø L sk . 0,u1 = constd, s4d

with L the thickness of the wall.
To represent the excitable dynamics of normal cardiac

tissue in simulations—i.e., the functionsF andCW in Eqs.(1)
and (2)—we used a modification of the dynamic Luo-Rudy
model(LRd) model[13] developed by Faber and Rudy[12].
The LRd model is a general mammalian ventricular cell
model, mainly based on data obtained from the guinea pig.
The model includes different ionic channel currents, repre-
sented mathematically by the Hodgkin-Huxley formalism
[14], as well as ionic pumps and exchangers, and describes

intracellular changes in ionic concentrations. Throughout this
manuscript we will use the following parameter values, typi-
cal of human right ventricular tissue[15,16]: k=2.6 rad/cm,
DL=1 cm2/s, and DT=0.11 cm2/s. For these values, the
ionic model yields a longitudinal conduction velocitycL of
65 cm/s and a transversal conduction velocitycT of
22 cm/sec.

Note that the detailed form ofF andC in Eqs.(1) and(2)
is unimportant in the subsequent theoretical analysis. The
specific dynamics of the model will affect the following con-
siderations only through the parametercT.

III. ASYMPTOTIC WAVE PROPAGATION

A. Slope-driven front behavior

We study plane waves propagating in thex direction[see
Fig. 1(b)]. We exploit the remainingy symmetry by assum-
ing y-independent solutions. This initial condition breaks the
helical symmetry of the slab described by Eq.(4). We as-
sume the existence of an asymptotic steady-state solution,
represented by a functionx=Fsud=Fskz+u1d, and propagat-
ing uniformly at a translational velocitycx. In a medium
where the conduction velocity along thex direction is differ-
ent in each layer due to the fiber rotation, this can only be
achieved for wave fronts with a specific tilt in each layer. In
this section we derive an equation for the slopeF8 of the
asymptotic wave front as a function of the fiber orientation in
a given layer.

Consider an arbitrary slice of the wave front as depicted
in Fig. 2, thin enough in thez direction so that the variation
in u can be neglected. Thex-to-z anisotropy ratior2 inside
this slice is

r2 =
D11

D33
= r0

2 − sr0
2 − 1dsin2 u, s5d

wherer0
2=DL /DT;r andr0 are positive.

In order to find the motion of frontAB, we first “isotro-
pize” the slice by scaling itsx dimension by a factor 1/r, in
order to achieve an isotropic medium with diffusivityDT. In

FIG. 2. Wave front segment in the normalsABd and the isotro-
pizedsAB* d medium. The angles with thez axis are denoted bya
anda*. The translational velocitiescx andcx

* , as well as the velocity
normal to the isotropized wave frontscTd, are shown.
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Fig. 2, leta be the angle between frontAB and thez direc-
tion, while a* is the corresponding angle, involving the
isotropized frontAB*. The normal velocity to the frontAB*
is cT, which should equalcx

* cosa* (Fig. 2). Knowing that
the translational velocity scales as thex dimension, it is eas-
ily shown that

tan2 a = scx/cTd2 − r2. s6d

Using tana=dF/dz=kF8sud, as well as Eq.(5), we get, from
Eq. (6),

sF8d2 =
1

k2FS cx

cT
D2

− r0
2 + sr0

2 − 1dsin2 uG . s7d

This equation describes a family of asymptotic solutions
with translational velocitiescx. The value ofcx depends on
the fiber organization in the slab and can be found from Eq.
(7) (see next section).

B. Asymptotic shape and translational velocity

Consider a slab of tissue with a wave propagating in thex
direction. The asymptotic wave front has a leading peak in
the layeru=umin where the fibers are the best aligned with
the x axis—i.e., whereu is closer to 0 modp [see Fig. 1(b)
for example].

First, we calculate the translational velocitycx from Eq.
(7). If the leading peak occurs at one of the boundaries of the
slab, we haveF8=0 due to the no-flux boundary condition.
For a leading peak inside the myocardial wall,F8 also equals
0, since it is an extremum ofF. By substitution ofF8sumind
=0 in Eq. (7), we find the translational velocity

cxsumind = ÎscL cosumind2 + scT sinumind2, s8d

wherecL=cTr0 and where we considered waves propagating
in the positivex direction.

Next, we calculate the asymptotic shape of the wave
front. Inserting the value ofcx from Eq. (8) into Eq. (7) and
integrating fromumin to any point within the wall thickness,
we find

Fsud =
Îr0

2 − 1

k
s±su,umind + F0, s9d

with F0 an integration constant depending on the origin of
the x axis and

s±su,umind = ±E
umin

u

Îsin2 u8 − sin2 umindu8. s10d

The sign determines the slope of the front and is positive for
u,umin and negative foru.umin.

C. Frequent case

Usually, fibers rotate by at least 2p /3 throughout the ven-
tricular wall [3]. It is therefore common to have a fiber par-
allel to thex axis at a certain depth. In this case—i.e.,umin
=0—Eq. (9) reduces to the more simple form

Fsud =
Îr0

2 − 1

k
cosu + F0. s11d

The overall sign is chosen for a convex front. Returning to
Eq. (8) and settingumin=0 we find

cx = cL. s12d

Remarkably and consistently with numerical simulations per-
formed by Keener and Panfilov[5], the translational velocity
is entrained to the longitudinal conduction velocitycL over
the whole wall thickness even, for example, where the local
fibers are perpendicular to the translational motion.

Although Eq. (11) is a special case of Eq.(9), we will
refer to them as cosine and elliptic integral wave solutions,
respectively.

IV. QUASIASYMPTOTIC REGIME: CUSP WAVES

An initially plane wave front will go through a transient
phase before reaching its asymptotic regime. It will become
wavy, as the conduction velocity is different in each fiber
layer. If there is a layer where the fibers are perpendicular to
the propagation direction, a trailing cusp will be formed as a
result of the low conduction velocity. The wave front has two
leading peaks, one above and one under the cusp, propagat-
ing a their own velocities[see Fig. 1(b)]. In this section we
derive the quasiasymptotic kinetics of cusp waves, based on
the assumption that cusps occur at the intersection of two
asymptotic solutions, each described by Eq.(9).

Consider a slab with boundaries atu=u1 (epicardium) and
u=u2 (endocardium). For simplicity, we take 0øu1,u2
øp. Assume a layer with fibers perpendicular to thex axis,
where a cusp is formed in an initially plane wave front. This
layer splits the wave front into two portions, a lower one,
represented by the functionx1, and one above the cusp, rep-
resented byx2. We assume thatx1 and x2 are independent
solutions of Eq.(7) with a cusp at their intersection. The
solutionx1 has a leading peak atu=u1 and the solutionx2 at
u=u2. The quasiasymptotic kinetics are described by

x1su,td = fs+su,u1d + F0,1+ cxsu1dt,

x2su,td = fs−su,u2d + F0,2+ cxsu2dt, s13d

with f =sÎr0
2−1d /k. The integration constantsF0,1 and F0,2

can be found by fixing the origin of thex axis. We chose the
cusp to be located atx=0 at timet=0. Substitution into Eqs.
(13) yields, for a cusp in the layeru=p /2,

F0,1= − fs+Sp

2
,u1D, F0,2= − fs−Sp

2
,u2D . s14d

Note that cusps can, for example, also be formed where
two asymptotic wave fronts collide. This does not necessar-
ily have to be in the layeru=p /2 and will, therefore, affect
the value of the integration constants in Eq.(14). The subse-
quent analysis is, however, valid for such cusps as well.

A. Vanishing cusps

If uu1+u2uÞp, the translational velocitiescxsu1d and
cxsu2d are different. In this case, the faster portion of the
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wave front will gradually overtake the slower one. As a re-
sult, the cusp will move towards one of the tissue bound-
aries, where it eventually disappears(see Fig. 3). Whenever
this occurs, an apparent acceleration of the wave front will
be observed on that surface: as the faster portion reaches the
surface, the translational velocity in thex direction suddenly
increases. For example, ifu1,u2 mod p, the portionx1 will
have a larger translational velocity and the cusp will disap-
pear at the surfaceu=u2. The timetc at which the cusp will
reach that layer can be found by solving Eqs.(13) for t:

tc =
1

cxsu1d − cxsu2d
f− fs+su2,u1d + F0,2− F0,1g. s15d

The distancexc at which the cusp reaches the surfaceu=u2
(Fig. 3) is then given by

xc = x1su2,tcd = x2su2,tcd = F0,2+ cxsu2dtc, s16d

whereF0,1 andF0,2 are given by Eq.(14). The equations for
a cusp disappearing at the surfaceu=u1 are similar. Note that
the same approach can be used to determine the time and
location at which the cusp crosses an arbitrary layer within
the myocardial wall.

B. Nonvanishing cusps

If uu1+u2u=p, both portions of the wave front have the
same translational velocity. In this case, the cusp remains in
the same fiber layer indefinitely and the quasiasymptotic re-
gime described by Eqs.(13) is an asymptotic one, different
from the solution derived previously, as it now shows a cusp.

V. CURVATURE EFFECTS

It is well known that in reaction-diffusion media such as
cardiac tissue, the curvature of a wave front will affect its
propagation velocity: if the front is concave, it will propagate
faster than if it is convex. To what extent is our neglect of
curvature justified? The question is most conveniently an-
swered in the isotropized medium, with diffusivityDT.

First, we focus on the leading peak. We take a cosine
wave as an illustration. In order to obtain an estimate of the

curvature effects we consider a thin slice around the leading
peak atu=0, in which fiber rotation can be neglected. In the
isotropized medium, the eikonal relation for this thin slice
reads

cx
* = cT − DTK * , s17d

whereK* is the curvature of the front.
The curvature is given by the second derivative of the

isotropized front,K* = d2F* sud /dz2, or, in terms of the
slope,

K * =
dstana * d

dz
=

d

dz

tana

r
. s18d

Thus we get

K * = k2 d

du

F8sud
r

s19d

=k2FF9sud
r

+ F8sud
d

du

1

r
G . s20d

At u=0, we haveF8=0 as well assd/duds1/rd=0. Hence,
we get

K * = k2 F9s0d
rsu = 0d

=
kÎr0

2 − 1

r0
s21d

after using Eqs.(5) and(11) and taking the sign for positive
curvature. From Eq.(21), we have K* =5.2Î2/3<2.4.
Equation(17) becomescx=22–0.26, yielding a 1% curva-
ture correction to the isotropized speed of the leading peak
and, hence, also to its actual speed. Note that in the left
ventricle,k is even smallers,1.3 rad/cmd, yielding an even
smaller curvature correction. We conclude that curvature has
little effect on the propagation of the cosine wave.

We next consider a trailing cusp. Here the converse ap-
proach is informative: knowing what speed correction is
needed, we estimate the curvature and judge to what extent
the cusp is an imperfect one. By way of illustration we ex-
amine the symmetric case whereu1=0, u2=p. The cusp is at
middepth,u=p /2, where the medium is already isotropic.
However, the overall asymptotic wave moves rigidly in thex
direction at speedcL.

At its leftmost point, the cusp must have a slopedF/dz
=0. Without any curvature correction, its speed would sim-
ply be cT. Therefore we need a correctioncL−cT. Such a
large correction, twice the original speed, may be too ex-
treme for us to put much trust in the eikonal equation. How-
ever, if we persist, we now have, instead of Eq.(17),

cL = cT − DTK. s22d

Therefore we obtain the concave curvature

K =
cT − cL

DT
=

cL

DT
S1

r
− 1D s23d

or, in cm−1, K=s65ds9ds1/3−1d=−396, corresponding to a
radius of curvaturer <−0.0025 cm. For comparison, the in-
verse pitch isk−1=0.38 cm and the wave front in human

FIG. 3. Schematics of the motion of a trailing cusp(thick
dashed line) at the intersection of two quasiasymptotic solutionsx1

and x2, for u1=0 and u2=2p /3. The cusp reaches the surfaceu
=u2 at a distancexc.
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cardiac tissue is usually 0.2 cm thick. Mathematically speak-
ing, a cusp has infinite curvature or, equivalently, a radius of
curvature equal to zero. Here, the radius of curvature is much
smaller than any other spatial dimension of interest, and
therefore, the cusp is perfect for practical purposes.

VI. THEORY VERSUS COMPUTATIONS

In the simulations, we have considered slabs of cardiac
tissue with dimensions 6 cm36 cm30.8 cm, to mimic a
typical portion of the right ventricular wall. To integrate Eq.
(1) we have used the operator splitting method to split it into
an ordinary differential equation(ODE) for the reaction part
F and a partial differential equation(PDE) for anisotropic
diffusion. The ODE was solved using a forward Euler
scheme with a time step of 0.01 ms. The relaxation equations
(2) of the gating variable in the LRd model were integrated
using a technique presented by Rush and Larsen[17]. The
diffusion PDE was also solved using a forward Euler scheme
with a space step of 0.10 mm, yielding a numerical accuracy
of more than 95% with respect to the conduction velocity of
action potentials. In the simulations, no-flux boundary con-
ditions were assumed for all boundaries. All simulations
were coded in theC++ programming language and compu-
tations were carried out on a parallel cluster consisting of 16
nodes equipped with dual AMD Athlon MP 22001 proces-
sors running at 1.8 GHZ. Each node has 1 GB of RAM with
the exception of the master node that has 4 GB. We used the
MPI library and a simple “domain slicing” algorithm[18] to
parallelize the code.

For the fiber organization we have addressed two different
cases: in case 1 we putu1=0 andu2=2p /3 and in case 2 we
hadu1=5p /18 andu2=17p /18. For both cases we compare
the asymptotic shape and translational velocity in theory and
simulation, as well as the motion of cusps.

A. Shape and translational velocity of the asymptotic
wave front

For case 1 the theoretical asymptotic solution is given by
a cosine wave propagating at the longitudinal velocity of
65 cm/s. In our numerical simulations we found an
asymptotic wave front propagating at 64.7 cm/s, which de-
viates less than 1% from the theoretically predicted value. In
Fig. 4(a) we compare the shape of the “surviving”
asymptotic wave in the simulation with the theoretically pre-
dicted cosine wave. We see that theory and simulation are in
close agreement.

For case 2, the theory predicts an elliptic integral wave
moving at a speedcx=62.8 cm/s, as obtained from Eq.(8).
Our computations show an asymptotic wave propagating at
62.1 cm/s, again close to the theoretical value(about 1%
deviation). Figure 4(b) compares the shape of the asymptotic
simulated wave front and the theoretical shape obtained from
elliptic integrals. Both curves show an almost perfect match.

B. Quasiasymptotic regime: Cusp waves

In this section we focus on the motion of cusps and the
distance and time at which they reach one of the surfaces of
the ventricular wall. As expected, our simulations show a
cusp forming in both cases atu=p /2. In the first case the
cusp eventually reaches the endocardial surface, where it
causes a sudden increase in the translational velocitycx. In
the other case, a similar situation is observed, but on the
epicardial surface. Figures 5(a) and 5(b) illustrate these ob-
servations. For each case we show intramural isochronal
maps, depicting the formation and motion of the cusp. In
both cases an arrow indicates the place where the cusp
reaches the epicardial or endocardial surface.

FIG. 4. Comparison of the asymptotic wave front in theory and
simulations in case 1(a) and case 2(b).

FIG. 5. Formation and disappearance of intramural cusp waves
and its effect on the translational velocitycx. We show transmural
isochrones in thexzplane obtained in simulations for case 1(a) and
case 2(b). The point where the cusp disappears at one of the sur-
faces is indicated by an arrow. Plots of the translational velocitycx,
on the endocardial surface for case 1(c) and on the epicardial
surface for case 2(d), are shown as a function ofx. Simulation
(solid line) and theory(dashed line) are compared.
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The theory enables us to predict the time and location of
the sudden increase incx, by Eqs.(15) and (16). First we
need to determine the integration constants and the transla-
tional velocities. For case 1, we foundF0,1=0 cm andF0,2
=0.22 cm [by numerical integration of Eq.(14)]. For the
cosine wave with leading peak atu=0 the translational ve-
locity is cxsu1d=65 cm/s. The translational velocitycxsu2d of
the elliptic integral wave is readily found from Eq.(8) and
has the value 37.52 cm/s. For the second case, the integra-
tion constants areF0,1=0.37 cm andF0,2=1.03 cm, whereas
the translational velocities were found to be
44.9 cm/sfcxsu1dg and 62.8 cm/sfcxsu2dg.

Table I compares the time and location of the disappear-
ance of the cusps in simulation and theory, for both cases.
For the theory, we evaluated the remaining unknown term
ssu2,u1d in Eq. (15), by numerical integration. Note that, in
the theoretical considerations of Sec. IV, we have assumed
that the cusp was fully formed att=0. In reality, it takes
some time before such cusps develop in an initially plane
wave front. Therefore, in the simulations, we waited 20 ms
after stimulating the planex=0, in order for a cusp to form in
the wave front(fourth isochrone in Fig. 5 for each setup).
From Table I we conclude that the theory predicts for both
cases a smallertc than seen in the simulations. Theoretical
and computed values are, however, always close(about 10%
deviation). Moreover, the error in the locationxc is for both
setups less than 5%. Again, we conclude that theory and
simulations are in close agreement.

Figures 5(c) and 5(d) show the translational velocity on
the endocardial surface for case 1[Fig. 5(c)] and on the
epicardial surface for case 2[Fig. 5(d)], as a function ofx.
The results obtained from the simulation are shown as a solid
line, while the theoretical curve is depicted as a dashed line.
As expected, a sudden increase of translational velocity was
observed, when the cusp reached the surface of interest. In
both cases, the simulations yield a lower translational veloc-
ity (by about 10%), before the sudden increase. After the
cusp has disappeared on one of the outer surfaces, we see
that theory and simulation show an almost perfect match
(about 1% deviation; see Sec. VI B).

VII. DISCUSSION

To date, the asymptotic wave propagation in cardiac tissue
was only studied in numerical simulations. In this paper, we
have presented an analytical description of the intramural
propagation in cardiac tissue. We have derived the shape and
translational velocity of the asymptotic wave front. We

found, in accordance with earlier simulation studies[4,5],
that the asymptotic waves propagate at the speed calculated
along the best aligned fibers. We have studied the quasias-
ymptotic regime where trailing cusps are present. The mo-
tion of cusps was studied, based on the assumption that they
occur at the intersection of two asymptotic wave solutions. If
those solutions have different translational velocities, the
cusp gradually moves toward the endocardial or epicardial
surface, where it causes apparent accelerations of the wave
front. Knowing when and where such accelerations occur is
of experimental relevance, for example when trying to deter-
mine the longitudinal and transversal propagation velocities
in cardiac tissue. We apply the theory to predict the location
and time at which such accelerations occur. Simulations were
performed in an extensive model of ventricular tissue. We
show that the theory is in close agreement with the numerical
computations and can be used as a predictive tool.

Throughout this manuscript we have assumed linear rota-
tional anisotropy, described by Eq.(4), based on experimen-
tal evidence[15,19]. Some experimental studies have, how-
ever, shown a nonlinear dependence on the depth coordinate
z in the pulmonary conus[7] and in epicardial layers of the
swine right ventricle[20]. We believe that our theoretical
approach is general enough to allow the use of any function
uszd. This will of course affect the shape of the asymptotic
wave fronts, which, depending on the choice ofuszd, might
no longer be described by cosine or elliptic integral waves.
The main results of our study with respect to cusp waves and
apparent accelerations on the outer surfaces will, however,
remain unaffected.

We have used a monodomain approach for the reaction-
diffusion properties of cardiac tissue, neglecting its bidomain
structure consisting of intracellular and extracellular media.
The bidomain properties have been shown to play a role in
the formation of virtual electrodes close to the site of stimu-
lation [21]. In the present paper, we were, however, inter-
ested in propagation far from the stimulating electrode.
Therefore we believe that the incorporation of bidomain ki-
netics is likely to have little or no effect on the results of this
study.

Surprisingly, curvature effects were shown to play a neg-
ligible role in the developed analysis. The asymptotic wave
front propagates at the speed along the best aligned fiber,
independent of its curvature. This result should not be taken
for granted, however. Equation(21) indicates that a sufficient
increase in the pitchk would make the effect noticeable. This
could be the case in some smaller animal hearts, where the
total fiber rotation can be up to 180°[22], whereas the wall
thickness can be much smaller than 0.8 cm.

Our analysis is essentially a geometrical one, without any
assumption of the choice of ionic model. It is reasonable to
assume that it will hold for any type of cardiac model.
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TABLE I. Time tc and locationxc of cusps reaching the epicar-
dial or endocardial surface: theory vs simulation.

Theory Simulation

Case 1 tc (ms) 27 31

xc (cm) 1.23 1.20

Case 2 tc (ms) 59 65

xc (cm) 3.03 2.93
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